2 research outputs found

    Truth Table Invariant Cylindrical Algebraic Decomposition by Regular Chains

    Get PDF
    A new algorithm to compute cylindrical algebraic decompositions (CADs) is presented, building on two recent advances. Firstly, the output is truth table invariant (a TTICAD) meaning given formulae have constant truth value on each cell of the decomposition. Secondly, the computation uses regular chains theory to first build a cylindrical decomposition of complex space (CCD) incrementally by polynomial. Significant modification of the regular chains technology was used to achieve the more sophisticated invariance criteria. Experimental results on an implementation in the RegularChains Library for Maple verify that combining these advances gives an algorithm superior to its individual components and competitive with the state of the art

    Understanding Branch Cuts of Expressions

    Get PDF
    We assume some standard choices for the branch cuts of a group of functions and consider the problem of then calculating the branch cuts of expressions involving those functions. Typical examples include the addition formulae for inverse trigonometric functions. Understanding these cuts is essential for working with the single-valued counterparts, the common approach to encoding multi-valued functions in computer algebra systems. While the defining choices are usually simple (typically portions of either the real or imaginary axes) the cuts induced by the expression may be surprisingly complicated. We have made explicit and implemented techniques for calculating the cuts in the computer algebra programme Maple. We discuss the issues raised, classifying the different cuts produced. The techniques have been gathered in the BranchCuts package, along with tools for visualising the cuts. The package is included in Maple 17 as part of the FunctionAdvisor tool.Comment: To appear in: Proceedings of Conferences on Intelligent Computer Mathematics (CICM '13) - Mathematical Knowledge Management (MKM) stran
    corecore